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Stabilized formulations for incompressible flows
with thermal coupling
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SUMMARY

We present applications of the stabilized finite element formulations developed for incompressible flows
with thermal coupling to 2D and 3D test problems. The stabilized formulations are based on the streamline-
upwind/Petrov–Galerkin and pressure-stabilizing/Petrov–Galerkin stabilizations and are supplemented
with discontinuity capturing (DC), including the discontinuity-capturing directional dissipation. The stabi-
lization and DC parameters associated with these formulations are also presented. The coupled fluid
mechanics and temperature equations are solved with a direct coupling technique. The test problems
computed include 2D and 3D natural convection, as well as a simplified 3D model of air circulation in a
small data center. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Stabilized formulations are now very commonly used in finite element computation of flow prob-
lems. These formulations bring numerical stability in flow problems with high Reynolds or Mach
numbers and shocks or thin boundary layers, without introducing excessive numerical dissipation.
They also bring numerical stability in incompressible flow computations when using equal-order
interpolation functions for velocity and pressure. Some of the earliest stabilized formulations
are the streamline-upwind/Petrov–Galerkin (SUPG) formulation for incompressible flows [1, 2]
and the SUPG formulation for compressible flows [3, 4]. The stabilized formulations introduced
in [5] for advection–diffusion equations and in [6] for advection–diffusion–reaction equations
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included discontinuity-capturing (DC) terms. The formulation in [6] accounted for the interaction
between the DC and SUPG terms by precluding the augmentation of the SUPG effect by the
DC effect when the advection and discontinuity directions coincide. The formulation in [6] also
included stabilization terms, which were called the ‘DRD’ terms, to counter the numerical insta-
bilities seen in reaction-dominated problems. The formulations introduced in [6] were applied in
[6] for the computation of coupled chemical and thermal transport problems governed by three
coupled advection–diffusion–reaction equations—one governing the temperature and the other two
governing the concentrations of two chemical species. These formulations were extended in [7] for
the computation of time-dependent versions of this class of coupled chemical and thermal trans-
port problems. The pressure-stabilizing/Petrov–Galerkin (PSPG) formulation for incompressible
flows [8, 9] assures numerical stability while allowing us to use equal-order interpolation functions
for velocity and pressure. An earlier version of this stabilized formulation for Stokes flow was
introduced in [10].

In these stabilized formulations, an embedded stabilization parameter most commonly known
as ‘�’ plays an important role. It involves representation of the local length scales (also known
as ‘element length’) and other parameters such as the local flow velocity and the time-step size.
Various element lengths and �’s were proposed starting with those in [1–4], followed by the
one introduced in [6]. The � definition introduced in [6] automatically yields lower values for
higher-order elements. Later, other � definitions that are applicable to higher-order elements were
proposed in [11] in the context of advective–diffusive systems. Calculating the �’s based on the
element-level matrices and vectors was introduced in [12] in the context of the advection–diffusion
equation and the Navier–Stokes equations of incompressible flows. These definitions are expressed
in terms of the ratios of the norms of the matrices or vectors. They automatically take into account
the local length scales, advection field and the element Reynolds number. These definitions were
extended in [13, 14] to compressible flows.

The discontinuity-capturing directional dissipation (DCDD) stabilization was introduced in
[15, 16] to be used with the SUPG/PSPG formulation of incompressible flows, in flow problems
with sharp gradients. The DCDD stabilization involves a second element length scale, which was
also introduced in [15, 16] and is based on the solution gradient. This new element length scale
is used together with the element length defined in [6]. Recognizing this second element length
as a diffusion length scale, new stabilization parameters for the diffusive limit were introduced
in [16, 17]. The DCDD stabilization was originally conceived in [15, 16] as an alternative to the
least-squares on incompressibility constraint (LSIC) stabilization. The DCDD takes effect where
there is a sharp gradient in the velocity field and introduces dissipation in the direction of that
gradient. In some versions of the DCDD stabilization, the way the DCDD is added to the formu-
lation precludes augmentation of the SUPG effect by the DCDD effect when the advection and
discontinuity directions coincide. Recently, the SUPG/PSPG formulation supplemented with the
DCDD stabilization was extended in [18] to turbulent flow computations. It was shown in [18],
that this DCDD-supplemented formulation is very comparable in numerical performance to the
SUPG/PSPG formulation supplemented with the Smagorinsky turbulence model. Also recently,
the ‘DRD’ stabilization introduced in [6] and its improved versions were applied in [19] to turbulent
flow computations, and the results obtained show a good potential for this approach.

Various forms of stabilized methods have also been applied to incompressible flows with thermal
coupling. For example, in finite element simulations of incompressible flows and coupled reaction–
convection–diffusion processes reported in [20], the SUPG formulation is used for the temperature
and species transport. In [20], the fluid mechanics equations are discretized with the Galerkin
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formulation, and the incompressibility constraint is enforced with a penalty formulation. The
SUPG/PSPG formulation of incompressible flows with thermal coupling and the associated stabi-
lization and DC parameters were presented in [21] in the context of the ALE formulation [22].
The DC stabilizations presented in [21] included the extension of the DCDD stabilization to the
temperature equation. In this paper, we apply those formulations to a number of 2D and 3D test
problems. The test problems do not involve any moving boundaries or interfaces; therefore, the
formulations described in the context of the ALE formulation are used with zero mesh velocity.
The coupled fluid mechanics and temperature equations are solved with a direct coupling technique
(see [21] for terminology). The test problems computed include 2D and 3D natural convection
problems, as well as a simplified 3D model of air circulation and cooling in a small data center. We
describe the governing equations in Section 2. The stabilized formulations, stabilization parameters
and the DC parameters are described in Sections 3–5. Test computations and concluding remarks
are presented in Sections 6 and 7.

2. GOVERNING EQUATIONS

Let �t ⊂Rnsd be the spatial domain with boundary �t at time t . The subscript t allows for the
time dependence of the domain. The coupled incompressible flow and thermal transport equations
are expressed on �t as

�

(
�u
�t

+u·∇u−(1−�T(T −Tref))aGRAV

)
−∇·r=0 (1)

∇ ·u=0 (2)

�Cp

(
�T
�t

+u·∇T

)
−∇·(�∇T )=0 (3)

Here, � and u are the density and velocity, �T is the coefficient of thermal expansion, T is the
temperature, Tref is a reference temperature, aGRAV is the gravitational acceleration, Cp is the
constant-pressure specific heat and � is the thermal conductivity. The stress tensor r is defined as
r(p,u)=−pI+2�e(u), where p is the pressure, I is the identity tensor, �=�� is the viscosity,
� is the kinematic viscosity and e(u)=((∇u)+(∇u)T)/2 is the strain-rate tensor. For ideal gases,
�T=1/T , with T in the expression representing the absolute temperature. As it was pointed out in
[21], this expression is not valid for water, and the �T values need to be extracted from tabulated
data. In computations, it was proposed in [21] to use a polynomial representation of that data,
expressed as a function of temperature, for the expected temperature range T1�T�T2. A simple
way, proposed in [21], would be to use a quadratic polynomial:

�T(T )=(�T)1+b1(T −T1)+b2(T −T1)
2 (4)

where (�T)1=�T(T1), and the coefficients b1 and b2 are determined by a least-squares fit to
the data tabulated for the range T1�T�T2. The essential and natural boundary conditions for
Equation (1) are represented as u=g on (�t )g and n·r=h on (�t )h, where (�t )g and (�t )h are
complementary subsets of the boundary �t ,n is the unit normal vector and g and h are given
functions. A divergence-free velocity field u0(x) is specified as the initial condition. The essential
and natural boundary conditions for Equation (3) are represented as T =gT on ((�t )g)T and
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n·�∇T =hT on ((�t )h)T, where ((�t )g)T and ((�t )h)T are complementary subsets of the boundary
�t , and gT and hT are given functions.

3. FINITE ELEMENT FORMULATIONS

The finite element trial function spaces Sh
u for velocity and Sh

p for pressure, and the test function

spaces Vh
u and Vh

p =Sh
p are defined by using, over �t , first-order polynomials. Similarly, the

trial and test functions spaces Sh
T and Vh

T for temperature are defined by using first-order polyno-
mials. Although the test computations reported in this paper do not involve moving boundaries or
interfaces, for generality we express the stabilized formulations in the context of the ALE method.
The formulation corresponding to Equations (1) and (2) is expressed, from [8, 16, 21], as follows:
find uh ∈Sh

u and ph ∈Sh
p such that ∀wh ∈Vh

u and ∀qh ∈Vh
p :

∫
�t

wh ·�
(

�uh

�t

∣∣∣∣
n
+(uh−vh) ·∇uh−(1−�T(T h−Tref))aGRAV

)
d�

+
∫

�t

e(wh) :r(ph,uh)d�−
∫

(�t )h

wh ·hh d�+
∫

�t

qh∇ ·uh d�

+
nel∑
e=1

∫
�e
t

1

�
[�SUPG�(uh−vh) ·∇wh+�PSPG∇qh]

· [Ł(ph,uh)−�(1−�T(T h−Tref))aGRAV]d�

+
nel∑
e=1

∫
�e
t

�LSIC∇ ·wh�∇ ·uhd�+SDC=0 (5)

where n is the vector of element (parent-domain) coordinates, vh is the mesh velocity, and

Ł(qh,wh)=�

(
�wh

�t

∣∣∣∣
n
+(uh−vh) ·∇wh

)
−∇·r(qh,wh) (6)

Here, �SUPG, �PSPG and �LSIC are the SUPG, PSPG and LSIC stabilization parameters. We provide
in Section 4 the definitions used for the computations reported in this paper. The symbol SDC
represents the DC term, which we find helpful in computations with thermal coupling, especially
for the equation governing the temperature. For the Navier–Stokes equations, the DC term is given
from [16, 17, 23] as

SDC=
nel∑
e=1

∫
�e
t

�∇wh :(mDC ·∇uh)d� (7)

where mDC is the DC parameter. For examples of ways of calculating this parameter, including the
DCDD parameter, see [16, 17, 23]. We note that the DCDD stabilization was originally introduced
as an alternative to the LSIC stabilization; therefore, normally only one of these stabilizations
would be retained. How we calculate mDC is described in Section 5.
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The stabilized formulation corresponding to Equation (3) is expressed from [5, 6, 21] as follows:
find T h ∈Sh

T such that ∀wh ∈Vh
T:

∫
�t

wh�Cp

(
�T h

�t

∣∣∣∣
n
+(uh−vh) ·∇T h

)
d�+

∫
�t

∇wh ·�∇T h d�

−
∫

((�t )h)T

whhh d�+
nel∑
e=1

∫
�e
t

(�SUPG)T(uh−vh) ·∇wh

×
(

�Cp

(
�T h

�t

∣∣∣∣
n
+(uh−vh) ·∇T h

)
−∇·(�∇T h)

)
d�+(SDC)T=0 (8)

where (�SUPG)T is the SUPG stabilization parameter, and from [5, 6]:

(SDC)T=
nel∑
e=1

∫
�e
t

∇wh ·jDC∇T h d� (9)

For early examples of ways of calculating jDC, see [5, 6]. Newer examples of ways of calculating
jDC are those based on the DCDD stabilization [16, 17, 23] and ‘YZ� shock-capturing’ [17, 23]
techniques (the ‘�’ in YZ� shock-capturing is not related to the �T representing the coefficient of
thermal expansion). How we calculate jDC is described in Section 5.

4. STABILIZATION PARAMETERS

For the Navier–Stokes equations, we provide the stabilization parameters defined in [16, 21]:

�SUPG=
(

1

�2SUGN1
+ 1

�2SUGN2
+ 1

�2SUGN3

)−1/2

(10)

�SUGN1=
( nen∑
a=1

|(uh−vh) ·∇Na|
)−1

, �SUGN2= �t

2
, �SUGN3= h2RGN

4�
(11)

hRGN=2

( nen∑
a=1

|r ·∇Na|
)−1

, r= ∇‖uh‖
‖∇‖uh‖‖ (12)

�PSPG=�SUPG (13)

�LSIC=�SUPG‖uh−vh‖2 (14)

where �t is the time-step size, nen is the number of element nodes and Na is the shape function
associated with node a. We note again that although the test computations reported in this paper
do not involve moving boundaries or interfaces, for generality we provide the definitions of the
stabilization parameters in the context of the ALE method. For more ways of calculating �SUPG,
�PSPG and �LSIC, see [12, 16, 17, 23].
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For the temperature equation, we provide the stabilization parameters defined in [21]:

(�SUPG)T=
(

1

((�SUGN1)T)2
+ 1

((�SUGN2)T)2
+ 1

((�SUGN3)T)2

)−1/2

(15)

(�SUGN1)T=�SUGN1, (�SUGN2)T=�SUGN2, (�SUGN3)T= ((hRGN)T)2

4(�/(�Cp))
(16)

(hRGN)T=2

( nen∑
a=1

|rT ·∇Na|
)−1

, rT= ∇T h

‖∇T h‖ (17)

5. DC PARAMETERS

For the Navier–Stokes equations, we can define mDC as mDC=�DCI, mDC=�DCrr, mDC=�DC[rr−
(r ·s)2ss] (where s=u/‖u‖), or in some more complex way, such as by using ‘switch’ functions,
as described in [17, 23]. Based on the DCDD stabilization, �DC can be calculated by using the
expression:

�DC=�DCDD= 1

2

(‖uh−vh‖
uref

)2

(hRGN)2‖∇‖uh‖‖ (18)

where uref is a reference velocity (such as ‖uh‖ at the inflow or the difference between the estimated
maximum and minimum values of ‖uh‖).

For the temperature equation, we can define jDC as jDC=�Cp(�DC)TI, jDC=�Cp(�DC)TrTrT,
or in some more complex way, such as by using ‘switch’ functions, as described in [17, 23]. Based
on YZ� shock-capturing (with �=2), (�DC)T can be calculated, as proposed in [21], by using the
following expression:

(�DC)T=(�Y Z�)T=
∣∣∣∣∣Y−1

(
�T h

�t

∣∣∣∣
n
+(uh−vh) ·∇T h

)∣∣∣∣∣
(

(hRGN)T

2

)2

(19)

where Y is a scaling value for T , which can be selected as Y =Tmax−Tmin.
Based on the DCDD stabilization, (�DC)T can be calculated by using one of the following

expressions:

(�DC)T=((�DCDD)T)1=‖uh−vh‖
(

(hRGN)T

2

) ‖∇T h‖(hRGN)T

(�T )ref
(20)

(�DC)T=((�DCDD)T)2= ‖uh−vh‖2
uref

(
(hRGN)T

2

) ‖∇T h‖(hRGN)T

(�T )ref
(21)

where (�T )ref is a reference value for �T , which can be selected as (�T )ref=Y . The expression
given by Equation (20) was proposed in [21].

We note that the DC expressions given by Equations (19)–(21) are all quadratic in hRGN
and (hRGN)T. Using expressions that are linear in those local length scales would lead to more
dissipative DC stabilization and that might be preferable in some cases. For example, it was shown
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in [24] that YZ� shock-capturing with �=1 (leading to a DC expression that is linear in hRGN)
was the best compromise between accuracy and robustness for drug delivery problems.

6. TEST COMPUTATIONS

All computations are carried out in a parallel computing environment, using PC clusters. In all
cases, the fully discretized, coupled fluid mechanics and temperature equations are solved with a
direct coupling (see [21] for terminology). In solving the linear equation system at every nonlinear
iteration, the GMRES search technique [25] is used with a diagonal preconditioner. The LSIC
term is dropped, and the stabilization parameters are based on Equations (10)–(13) and (15)–(17).
Unless stated otherwise, the �SUGN2 and (�SUGN2)T terms are dropped in Equations (10) and (15).
The DC terms are included only when it is explicitly stated so, with the definitions mDC=�DCI and
jDC=�Cp(�DC)TI and with the DC parameters calculated based on Equations (18) and (20). In
time integrations, all terms involving �T are treated implicitly. In natural convection, the Rayleigh
number, based on a characteristic length d , is used for parameterizing the flow. It is defined as

Ra= ‖aGRAV‖�m(Th−Tc)d3

��
(22)

Here, � is the thermal diffusivity, Th and Tc are the hot and cold temperature boundary conditions,
respectively, �m is a reference value for �T, set as �m =2/(Th+Tc), and the magnitude of the
gravitational acceleration is set to 9.81m/s2. In all computations the fluid is air, with �=1.5×
10−5m2/s, and the Prandtl number, defined as Pr=�/�, is set to 0.71. Computations are carried
out with both the actual (spatially and temporally varying) thermal-expansion coefficient �T and
the reference thermal-expansion coefficient �m , and the results are compared. The computed data
we report include Nuh, which is the surface-averaged value of the Nusselt number at the hot wall.
The Nusselt number is defined here as Nu=(n·∇T )d/(Th−Tc).

6.1. Natural convection in a 2D square cavity

The problem setup is shown in Figure 1. The two meshes used are shown in Figures 2 and 3.
Mesh-1 has 3721 nodes and 3600 four-node quadrilateral elements and is used for Ra=103, 104

and 105. Mesh-2 has 10 201 nodes and 10 000 four-node quadrilateral elements and is used for

h
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Figure 1. Natural convection in a 2D square cavity. Problem setup.
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Figure 2. Natural convection in a 2D square cavity. Mesh-1, used for Ra=103, 104 and 105, has 3721
nodes and 3600 four-node quadrilateral elements.

Figure 3. Natural convection in a 2D square cavity. Mesh-2, used for Ra=106, 107 and 108, has 10 201
nodes and 10 000 four-node quadrilateral elements.

Ra=106, 107 and 108. The time-step size is 0.003 s. The number of nonlinear iterations per time
step is 3, and the number of inner GMRES iterations per nonlinear iteration is 50.

In Table I, the Nuh values obtained with the actual thermal-expansion coefficient �T and reference
thermal-expansion coefficient �m are compared with the Nuh values reported in [26, 27]. The Nuh
valuesobtainedwith�m closelymatch thevalues reported in [26, 27],whereas thevaluesobtainedwith
�T are slightly lower. This suggests that it might be a common practice to treat �T as a constant. Such
a treatment introduces some error in the buoyancy-term evaluation, which explains the difference
between theNuh values obtainedwith�m and�T.With�m , the buoyancy term inEquation (1) becomes
a linear function of the temperature, when in reality the temperature dependence is nonlinear. Further-
more, the treatment of�T as a constant leads to a range of somewhat arbitrary choices for that constant.
Therefore, we believe that the actual value of �T should be used in computations and not its refer-
ence value. Temperature contours obtained with the actual value of �T are shown in Figures 4 and 5.
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Table I. Natural convection in a 2D square cavity.

Nuh

Ra �m �T References [26, 27]
103 1.118 1.112 1.118
104 2.243 2.220 2.243
105 4.515 4.472 4.519
106 8.816 8.742 8.799
107 16.52 16.38 16.52
108 30.14 29.91 30.23

The Nuh values obtained with the actual thermal-expansion coefficient �T
and reference thermal-expansion coefficient�m are comparedwith theNuh
values reported in [26, 27].

Figure 4. Natural convection in a 2D square cavity. Temperature contours obtained for Ra=103 (left), 104

(middle) and 105 (right).

Figure 5. Natural convection in a 2D square cavity. Temperature contours obtained for Ra=106 (left), 107

(middle) and 108 (right).
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The results presented in Table I are obtained without DC stabilization. The effect of using DC is
studied for Ra=106 and 108. The Nuh values obtained with different combinations of active and
inactive �DC and (�DC)T are shown in Table II. We observe that the Nuh values are rather close.
Temperature profiles near the hot and cold walls obtained for Ra=108 with different combinations
of active and inactive �DC and (�DC)T are shown in Figure 6. As expected, including a DC
term for the temperature equation results in a slight decrease in the steepness of the temperature

Table II. Natural convection in a 2D square cavity.

Ra=106 Ra=108

�DC (�DC)T Nuh �DC (�DC)T Nuh

Off Off 8.742 Off Off 29.91
On Off 8.731 On Off 29.75
Off On 8.790 Off On 30.73
On On 8.779 On On 30.52

The Nuh values obtained with different combinations of active and inactive
�DC and (�DC)T.

 283

 288

 293

 298

 303

Te
m

pe
ra

tu
re

 (
°K

)

llaw dloc raeNllaw toh raeN

No DC
With νDC

With (νDC)T
With νDC and (νDC)T

Figure 6. Natural convection in a 2D square cavity. Temperature profiles near the hot and cold walls
obtained for Ra=108 with different combinations of active and inactive �DC and (�DC)T.

Figure 7. Natural convection in a 2D square cavity. Elevation plots for
�DC (left) and (�DC)T (right) for Ra=108.
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profile in the boundary layer. However, the differences are rather small, and we believe that this is
because the mesh resolution is rather high where we have these temperature layers. Figure 7 shows
the elevation plots for the DC parameters for Ra=108. As expected, the values are higher near
the walls.

6.2. Natural convection in a 2D square cavity with an enclosed square body

The problem setup is shown in Figure 8. Computations are carried out for Ra=104 and 106. The
two meshes used are shown in Figures 9 and 10. Mesh-1 has 3360 nodes and 3200 four-node
quadrilateral elements and is used for Ra=104. Mesh-2 has 13 120 nodes and 12 800 four-node
quadrilateral elements and is used for Ra=106. The time-step size is 0.008 s, the number of
nonlinear iterations per time step is 3 and the number of inner GMRES iterations per nonlinear
iteration is 50 for Ra=104 and 30 for Ra=106. The various boundary conditions imposed on the
enclosed body are described in a dimensionless form with the expression �b=(Tb−Tc)/(Th−Tc),
where Tb is the temperature prescribed on the enclosed body.

No slip

N
o 

sl
ip

N
o 

sl
ip

T  = 303 Kh

No slip

T  = 283 Kc

No slip

d/3

d

A
di

ab
at

ic

A
di

ab
at

ic

Figure 8. Natural convection in a 2D square cavity with an enclosed square body: problem setup.

Figure 9. Natural convection in a 2D square cavity with an enclosed square body. Mesh-1, used for
Ra=104, has 3360 nodes and 3200 four-node quadrilateral elements.
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Figure 10. Natural convection in a 2D square cavity with an enclosed square body. Mesh-2, used for
Ra=106, has 13 120 nodes and 12 800 four-node quadrilateral elements.

Figure 11. Natural convection in a 2D square cavity with an enclosed square body. Ra=104, adiabatic
body. Temperature contours obtained with �m (left) and �T (right).

6.2.1. Ra=104, adiabatic body. We use this setup to compare the results obtained with �m and
�T. The Nuh values obtained with �m and �T are 2.335 and 2.308, respectively. These values are
close to those reported in [28]. Figure 11 shows the temperature contours obtained with �m and
�T. They are in good agreement with those shown in [28].

6.2.2. Ra=104, isothermal body. Computations are carried out for the non-dimensional body-
temperature values of �b=0.0, 0.5 and 1.0. These cases are computed with �T. Figure 12 shows
the temperatures contours obtained for �b=0.0, 0.5 and 1.0.

6.2.3. Ra=106, isothermal body. At Ra=106 the convection is unsteady. Computations are carried
out for �b=1.0, with �m and �T. The time-averaged temperature contours are shown in Figure
13. Time histories of Nuh obtained with �m and �T are shown in Figure 14. The time histories are
similar and compare well with those reported in [28].
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Figure 12. Natural convection in a 2D square cavity with an enclosed square body. Ra=104, isothermal
body. Temperature contours obtained for �b =0.0 (left), 0.5 (middle) and 1.0 (right).

Figure 13. Natural convection in a 2D square cavity with an enclosed square body. Ra=106, isothermal
body. Time-averaged temperature contours obtained for �b =1.0 with �m (left) and �T (right).

6.3. Natural convection in a 3D cubical cavity

The problem setup for the 3D case is an extension of the 2D case shown in Figure 1. The boundary
conditions imposed on the two additional faces are no-slip conditions for the fluid mechanics
equations and adiabatic condition for the temperature equation. The mesh has 29 791 nodes and
27 000 eight-node hexahedral elements and is shown in Figure 15. The time-step size is 0.005 s.
The number of nonlinear iterations per time step is 3, and the number of inner GMRES iterations
per nonlinear iteration is 50. The temperature distribution and contours for Ra=106 at steady state
are shown in Figure 16. The 3D effects are most prominent in the vicinity of the two added faces.
Figure 16 also shows the temperature contours on the mid-plane perpendicular to the axis along
the added dimension. These contours, as expected, are similar to those seen in the 2D case.
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Figure 14. Natural convection in a 2D square cavity with an enclosed square body. Ra=106,
isothermal body. Time histories of Nuh obtained with �m and �T. The dimensionless time used
in the plots is defined as t∗ = t�/d2. The curve for the Nuh obtained with �m has been shifted

up by 4.0 for the purpose of illustration.

Figure 15. Natural convection in a 3D cubical cavity. Two-dimensional view of the mesh, which has
29 791 nodes and 27 000 eight-node hexahedral elements.

6.4. Simplified model of air circulation and cooling in a small data center

The room is 5.3m long, 4.2m wide and 3.05m high. The room houses two computer racks, each
2.2m long, 1.0m wide and 1.6m high (see Figure 17). The cold air is pumped into the room from
a rectangular floor inlet with dimensions 1.0m×2.0m. The inlet is located between the two racks.
The air is vented out of the room through four ceiling vents, each with dimensions 1.0m×0.5m.
There are various types of boundary conditions specified in this problem (see Figure 17). For the
inlet on the floor, we prescribe the flow velocity to be in the normal direction, with magnitude
1.0m/s, and the temperature to be 288K. For the sides of the racks facing the floor inlet, appropriate
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Figure 16. Natural convection in a 3D cubical cavity. Temperature distribution on the
boundaries of the 3D domain (left) and temperature contours on the mid-plane perpendicular

to the axis along the added dimension (right).

Figure 17. Simplified model of air circulation and cooling in a small data center. A partial view of the
model surfaces: floor inlet (green), outer zones of the ceiling vents (magenta), rack (red), rack inflow and
outflow (yellow) and floor and ceiling (blue). The four enclosing walls and the inner zones of the ceiling
vents are not shown. The volume mesh has 361 440 nodes and 383 688 eight-node hexahedral elements.

boundary conditions would be the fluid stresses representing the suction generated by the cooling
fans in the racks. Instead, for simplicity, we specify a velocity of 0.25m/s in the normal direction,
and zero stress in the other two directions. For the sides of the racks facing away from the inlet,
we specify the velocity to be in the normal direction, with magnitude 0.25m/s and the temperature
to be 12K above the mean temperature over the sides facing the floor inlets. This temperature
differential is based on a heat generation rate of 400W per processor, with 12 processors per unit
length of the rack. For the ceiling vents, we partition each vent area into two zones: a rectangular
inner zone and the outer zone. In the inner zone, we specify the stresses to be zero. In the outer
zone, we specify the velocity in the normal direction and zero stress in the other two directions.
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This combination of boundary conditions ensures proper mass balance and prevents any reverse
flow from the vents. At all other boundaries, we specify no-slip conditions for the fluid mechanics
equations and adiabatic condition for the temperature equation. The volume mesh used in the
computation has 361 440 nodes and 383 688 eight-node hexahedral elements. The time-step size is
0.0045 s. The number of nonlinear iterations per time step is 3, and the number of inner GMRES
iterations per nonlinear iteration is 30. Unlike the test cases in the preceding sections, the highly
transient nature of this problem requires �SUGN2 and (�SUGN2)T to be active. Furthermore, to
prevent possible oscillations in regions of high gradients that may be relatively under-resolved, we
include the DC terms.

Figure 18 shows the temperature distribution on three mutually perpendicular planes in the
room. On the vertical plane cutting through the racks, we see, as expected, hot regions in the
vicinity of the hot faces of the racks. We also see that the rising air creates pockets of hot air
above the racks. Table III provides the average temperature values at various locations in the room.
Figure 19 shows the velocity vectors on half of the vertical plane bisecting the racks.

Figure 18. Simplified model of air circulation and cooling in a small data center. Temperature distribution
on three mutually perpendicular planes in the room.

Table III. Simplified model of air circulation and cooling in a small
data center. Average temperature at various locations in the room.

Location Average temperature (K)

Room 290.9
Ceiling 293.8
Floor 288.1
Ceiling vents 293.7
Horizontal plane
bisecting the racks 289.9
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Figure 19. Simplified model of air circulation and cooling in a small data center. Velocity vectors on half
of the vertical plane bisecting the racks.

7. CONCLUDING REMARKS

We presented applications of the stabilized finite element formulations developed earlier for incom-
pressible flows with thermal coupling to 2D and 3D test problems. The formulations are based
on the SUPG and PSPG stabilizations and are supplemented with DC. We also described the
stabilization and DC parameters to be used with these formulations. Although the fluid mechanics
and temperature equations have a common advective length scale, they have their individual diffu-
sive length scales. We provided extensions of the DCDD to the fluid mechanics and temperature
equations. For computational robustness, we solve the coupled fluid mechanics and temperature
equations with a direct coupling technique. The test problems computed included a number of 2D
and 3D natural convection problems and a simplified 3D model of air circulation and cooling in
a small data center. In some of the cases, we were able to compare our results to those reported
in the literature. The favorable nature of the comparisons in those cases and the reasonable nature
of the results in the other cases increased our confidence in and demonstrated a good potential for
the formulations developed.

APPENDIX A: QUADRATIC REPRESENTATION OF �T

For ideal gases, �T=1/T , with T in the expression representing the absolute temperature. As it was
pointed out in [21], this expression is not valid for water, and the �T values need to be extracted
from tabulated data. Table AI provides the values of �T for water at various temperatures. As
mentioned in Section 2, it was proposed in [21] to use in computations a polynomial representation
of such data, expressed as a function of temperature, for the expected temperature range T1�T� T2.
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Table AI. Values of �T for water at various temperatures.

Temperature (◦C) �T (K−1)

0 −8.530e−05
5 5.200e−06

10 8.211e−05
15 1.480e−04
20 2.070e−04
25 2.590e−04
30 3.060e−04
35 3.490e−04
40 3.890e−04
45 4.270e−04
50 4.620e−04
55 4.960e−04
60 5.290e−04
65 5.601e−04
70 5.900e−04
75 6.190e−04
80 6.470e−04
85 6.750e−04
90 7.020e−04
95 7.280e−04

Table AII. Curve fitting coefficients b1 and b2 for water
for various temperature ranges.

Temperature (◦C) b1 (K−2) b2 (K−3)

0–95 1.446e−05 −6.519e−08
10–95 1.148e−05 −4.755e−08
20–95 9.545e−06 −3.582e−08
30–95 8.273e−06 −2.811e−08
40–95 7.414e−06 −2.318e−08
50–95 6.795e−06 −1.994e−08
60–95 6.232e−06 −1.563e−08

5–75 1.359e−05 −7.156e−08
15–75 1.095e−05 −5.320e−08
25–75 9.153e−06 −3.989e−08
25–65 9.306e−06 −4.530e−08
0–40 1.761e−05 −1.471e−07
0–30 1.827e−05 −1.766e−07
30–60 8.684e−06 −4.237e−08

Also as mentioned in Section 2, a simple way, proposed in [21], would be to use a quadratic
polynomial:

�T(T )=(�T)1+b1(T −T1)+b2(T −T1)
2 (A1)

where (�T)1=�T(T1), and the coefficients b1 and b2 are determined by a least-squares fit to the
data tabulated for the range T1�T�T2.
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Figure A1. Comparison of the quadratic and 1/T representations of �T. The �T values (top) and the time
histories of the Nuh values (bottom) for the 2D square cavity at Ra=106. In the top frame, the symbol ◦
denotes the 1/T data, and the symbol � denotes the data obtained from the quadratic representation.

The data from Table AI are used here for determining the values of b1 and b2 for various
temperature ranges. The results from this curve fitting exercise are tabulated in Table AII. Overall,
the quadratic model is able to represent �T rather well for reasonable lengths (�50K) of temperature
ranges.

We tested this quadratic-representation concept in modeling �T for air (perfect gas). The coef-
ficients b1 and b2 obtained for air for the temperature range of 0–100◦C are −1.295 and 3.196,
respectively. As seen in Figure A1, the quadratic and 1/T representations of �T are very close. We
used this quadratic representation of �T in re-computing the case of 2D square cavity at Ra=106

(see Section 6.1). As seen in Figure A1, the Nuh values obtained with the quadratic and 1/T
representations of �T are very close.
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